gravitational waves - определение. Что такое gravitational waves
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое gravitational waves - определение

PROPAGATING SPACETIME RIPPLE
Gravitational waves; Existence of gravitational waves; Gravitational Radiation; Gravitational Wave; Gravitational radiation; Gravitational wave radiation; High Frequency Gravitational Waves; Gravitational Waves; High-Frequency Gravitational Waves; Gravity wave detector; Gravitation wave; Gravity of waves; Gravitational of waves; Gravitation waves; Gravitationl waves; Gravitational damping; Persistent gravitational wave observables; PGWO
  • access-date=18 October 2017}}</ref>
  • The effect of a cross-polarized gravitational wave on a ring of particles
  • The effect of a plus-polarized gravitational wave on a ring of particles
  • access-date=17 March 2014}}</ref>
  • LIGO measurement of the gravitational waves at the Hanford (left) and Livingston (right) detectors, compared to the theoretical predicted values.
  • A schematic diagram of a laser interferometer
  • doi = 10.1038/nature.2015.16830}}</ref>
  • Linearly polarised gravitational wave
  • access-date=20 September 2016}}</ref>
  • Simulation of the collision of two black holes. In addition to forming deep gravity wells and coalescing into a single larger black hole, gravitational waves will propagate outwards as the [[black hole]]s spin past each other.

Gravitational wave         
Gravitational waves are disturbances or ripples in the curvature of spacetime, generated by accelerated masses, that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905http://www.
Gravitational plane wave         
Plane gravitational waves; Plane gravitational wave; Gravitational plane waves
In general relativity, a gravitational plane wave is a special class of a vacuum pp-wave spacetime, and may be defined in terms of Brinkmann coordinates by
Gravitational-wave astronomy         
TYPE OF ASTRONOMY INVOLVING OBSERVATION OF GRAVITATIONAL WAVES
Graviton astronomy; Gravitational wave astronomy; Detection of gravitational waves; Gravitational wave detection; Gravitational-wave detection; Gravitational-wave observation; Gravitational wave observation; Gravitational waves detection; Gravitational-Wave Astronomy
Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves (minute distortions of spacetime predicted by Albert Einstein's theory of general relativity) to collect observational data about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

Википедия

Gravitational wave

Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as waves similar to electromagnetic waves but the gravitational equivalent. Gravitational waves were later predicted in 1916 by Albert Einstein on the basis of his general theory of relativity as ripples in spacetime. Later he refused to accept gravitational waves. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed) – showing one of the ways the methods of Newtonian physics are unable to explain phenomena associated with relativity.

The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the Hulse–Taylor binary pulsar, which matched the decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, Russell A. Hulse and Joseph Hooton Taylor Jr. received the Nobel Prize in Physics for this discovery. The first direct observation of gravitational waves was not made until 2015, when a signal generated by the merger of two black holes was received by the LIGO gravitational wave detectors in Livingston, Louisiana, and in Hanford, Washington. The 2017 Nobel Prize in Physics was subsequently awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the direct detection of gravitational waves.

Where General Relativity is accepted, gravitational waves as detected are attributed to ripples in spacetime, otherwise the gravitational waves can be thought of simply as a product of the orbit of binary systems. A binary orbit causes the binary system's geometry to change through 180 degrees and also causes the distance between each body of the binary system and the observer to change through 180 degrees. As per any theory on gravity, including Newton’s formula on gravitation below, gravitational force changes in proportion to the inverse square of distance. These small changes of distance between each body of a binary system and an observer causes an inevitable and predictable gravitational wave at a frequency of two times the orbital frequency:

F = G m 1 m 2 r 2 , {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}},}

In gravitational-wave astronomy, observations of gravitational waves are used to infer data about the sources of gravitational waves. Sources that can be studied this way include binary star systems composed of white dwarfs, neutron stars, and black holes; events such as supernovae; and the formation of the early universe shortly after the Big Bang.

Примеры употребления для gravitational waves
1. What we see is that the jets are bent together and intertwined, which indicates that the pair of supermassive black holes are bound and moving together." When the objects merge several million years from now, Einstein‘s theory of relativity predicts they will emit a burst of gravitational waves.